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EDITORIAL

Brain Barriers and brain fluids research 
in 2020 and the fluids and barriers of the CNS 
thematic series on advances in in vitro modeling 
of the blood–brain barrier and neurovascular 
unit
Richard F. Keep1,4*, Hazel C. Jones2 and Lester R. Drewes3 

Abstract 

This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothe‑
lium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; 
disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the 
recently completed Fluids Barriers CNS thematic series entitled, ‘Advances in in vitro modeling of the blood–brain bar‑
rier and neurovascular unit’. Such in vitro modeling is progressing rapidly.
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Brain barriers and brain fluids research continues to be a 
vibrant field. For example, over 10,000 articles were pub-
lished in 2020 (as accessed on Medline/Ovid) on either 
the blood–brain barrier (BBB), the brain endothelium, 
the choroid plexus (CP), cerebrospinal fluid (CSF), brain 
edema or hydrocephalus. That is too large a body of work 
to address in this review, but we aim to highlight some 
of the current themes of such research. As always, the 
choice of papers to highlight is idiosyncratic, reflecting 
in part the interests of the editors of Fluids and Barriers 
of the CNS. We apologize for the many important papers 
that are not cited.

In addition to reviewing the general literature, we also 
discuss the recently completed Fluids Barriers CNS the-
matic series entitled, ‘Advances in in  vitro modeling of 
the blood–brain barrier and neurovascular unit’. In vitro 

models are advancing rapidly and providing greater 
insight into the mechanisms underpinning the BBB and 
neurovascular unit (NVU) in health and disease.

Elements of the blood–brain barriers and the brain 
fluid systems
Brain endothelium
Molecular mechanisms regulating BBB function, includ-
ing tight junctions (TJs), are potential therapeutic targets 
for a variety of neurological conditions. Sladojevic et al. 
[1] found that Regulator of G-protein Signaling 5 (RGS5) 
regulates brain endothelial nitric oxide synthase and TJs 
in  vitro. In  vivo, an endothelial specific RGS5 mouse 
knockout had larger infarcts, worse neurological defi-
cits and more brain edema after stroke, suggesting RGS5 
might be a therapeutic target.

Brain endothelial intercellular junctions are com-
plex dynamic structures. To further understand how 
to manipulate claudin-5, Roudnicky et  al. [2] have used 
human pluripotent stem cell-derived endothelial cells 
to create a stable cell line expressing claudin5-green 
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fluorescent protein (CLDN5-GFP). They then screened 
a chemical library and identified 62 compounds that 
activated CLDN5-GFP. One of which, RepSox, a TGFβ 
pathway inhibitor, was further examined and found to 
stabilize the vasculature and induce the expression of 
other TJ proteins and transporters. Kakogiannos et  al. 
[3] described an interesting interaction between the TJ 
proteins, claudin-5 and junctional adhesion molecule 
A (JAM-A), whereby JAM-A can upregulate claudin-5 
expression via the transcription factor C/EBP-alpha. Pre-
viously, it was found that JAM-A can also act as a leuko-
cyte adhesion molecule at the BBB [4]. Together, these 
results suggest important roles for this relatively-under-
studied brain endothelial TJ protein.

The endothelial cytoskeleton is important for regulat-
ing multiple functions and Samus et  al. [5] found that 
the actin-binding protein cortactin may be a therapeu-
tic target in multiple sclerosis. In mouse experimental 
autoimmune encephalomyelitis (a model of multiple 
sclerosis), gene inactivation of cortactin reduced neu-
roinflammation and a lack of cortactin ameliorated leu-
kocyte migration across the brain endothelium in  vivo 
and in  vitro. Mehra et  al. [6] also reported that activa-
tion of N-Methyl-d-Aspartate Receptors (NMDARs) in 
brain endothelial cells upregulates immune cell infiltra-
tion into brain by phosphorylating myosin light chain 
and subsequent cell shrinkage. Interestingly, endothelial 
and neuronal NMDARs differ in structure, function and 
pharmacology.

Age has an enormous impact on the burden of cer-
ebrovascular disease. However, disease mechanisms and 
treatments are often studied in young animals. Chen 
et  al. [7] examined the effect of normal aging on capil-
lary, arterial and venous brain endothelial cells using 
single-cell RNA sequencing in mice. They found the big-
gest changes with age occurred in the capillary endothe-
lial cell transcriptome and that they could be ameliorated 
by exposure to plasma from young animals, indicat-
ing the importance of circulatory factors. Zhao et  al. 
[8] employed a similar approach to examine the effects 
of aging on the transcriptome of capillary, arterial and 
venous brain endothelial cells in mice. Aging impacted 
inflammatory signaling in all segments and particularly 
impacted energy metabolism and barrier permeability in 
capillary endothelial cells. The effects of aging could be 
reversed with a glucagon-like peptide-1 receptor agonist. 
Yang et  al. [9] have identified a switch from ligand-spe-
cific receptor-mediated transcytosis at the BBB to a non-
specific caveolar transcytosis with aging in mice. That 
change may be linked to reduced pericyte coverage.

At the other end of the age spectrum, during brain 
blood vessel development, Chen et  al. [10] examined 
the role of the gene encoding prion protein 2 (Prnd), 

which encodes the protein doppel. Prnd knockout mice 
had impaired blood vessel morphogenesis, sprouting 
defects and BBB dysfunction. Similarly, Cottarelli et  al. 
[11] found that fibroblast growth factor binding protein 
1 (Fgfbp1) is a novel Wnt/beta-catenin regulated gene 
and that endothelial cell-specific loss of Fgfbp1 results in 
transient hypervascularization and a delay in BBB matu-
ration. They found Fgfbp1 concentrates Wnt ligands near 
endothelial junctions. Interestingly, Veys et al. [12] found 
that the major brain endothelial glucose transporter, 
Glut1, is crucial for CNS angiogenesis but not BBB bar-
rier function. Major facilitator superfamily domain-con-
taining 2a (Mfsd2a) is another protein important in BBB 
development. Wang et  al. [13] found that Mfsd2a binds 
with another protein, Spinster homolog 2, to regulate 
sphingosine-1-phosphate release from brain endothe-
lial cells which is important for BBB formation and 
maintenance.

Species differences are a potential confounder for the 
translation of preclinical data to the clinic. Song et  al. 
[14] compared the transcriptomes of human and mouse 
brain microvascular endothelial cells and this should pro-
vide a valuable resource particularly since much research 
is mouse based. As noted throughout this review, major 
advances in our understanding of the brain endothelium 
and the NVU have utilized transcriptomics and particu-
larly the multiple uses of RNA sequencing (RNA-Seq). 
Some guidelines on the appropriate approach for per-
forming, analyzing and publishing such studies have 
recently been published [15].

Neurovascular unit
The importance of astrocytes in regulating BBB and 
other cerebrovascular functions has long been recog-
nized (reviewed in [16]). For example, Wnt signaling is 
important for maintaining the BBB and Guerit et al. [17] 
recently demonstrated the importance of astrocytic Wnt 
release in that function in mice. Blocking such release 
increased BBB permeability, endothelial vesicle forma-
tion and brain edema.

Interestingly, Batiuk et  al. [18] used single-cell RNA 
sequencing to identify multiple astrocyte subtypes that 
vary across and within mouse brain regions raising the 
possibility of another level of cerebrovascular regulation. 
Uchida et al. [19] recently described regional differences 
in transporter expression in brain capillaries from rats 
and humans. The extent that these changes are related to 
inherent differences at the endothelium or differences in 
signals from other cells of the NVU (e.g., astrocytes) mer-
its investigation.

Pericytes are another important component of the 
NVU: Mae et  al. [20] examined the effects of pericyte 
loss on the cerebral endothelium at the single cell level. 
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They found that pericytes are important for a limited set 
of BBB functions but have a role in regulating endothe-
lial arterio-venous zonation and angiogenesis. Further 
evidence on the importance of pericytes in BBB function 
comes from Gautam et al. [21] who used a pericyte-spe-
cific laminin knockout. They found that loss of pericyte 
laminin caused age-dependent BBB disruption includ-
ing altered para- and transcellular pathways. Similarly, 
Sheikh et al. [22] found that neural-specific depletion of 
members of the non-specific lethal chromatin complex 
led to a TLR4-mediated inflammatory signaling cascade 
in neighboring pericytes that in turn led to marked cer-
ebrovascular defects and cerebral hemorrhage. An inter-
esting advance is the description of tunneling nanotubes 
linking retinal pericytes that have an important role in 
neurovascular coupling [23].

While the role of astrocytes and pericytes in regulating 
the BBB has been the subject of extensive investigation, 
macrophages/microglial cells have received less atten-
tion. Ronaldson and Davis [24] recently reviewed the role 
of microglial cells in BBB regulation. In addition, Delaney 
et al. [25] found that mutations in colony stimulating fac-
tor-1 receptor (Csf-1r) in a rare condition called adult-
onset leukoencephalopathy with axonal spheroids and 
pigmented glia (ALSP), were associated with cerebro-
vascular pathologies. Csf-1r is critical for macrophage/
microglia function and they found that attenuating Csf-1r 
signaling resulted in remodeling of BBB TJs. Santisteban 
et al. [26] provided evidence of the importance of brain 
endothelial cell to perivascular macrophage crosstalk in 
BBB dysfunction that can occur in hypertension, with 
endothelial angiotensin II type-1 receptors playing a role 
in initiating dysfunction but perivascular macrophages 
being required for a full phenotype.

Similarly, little is known about brain endothelial cell 
oligodendrocyte interactions. The evidence on those bi-
directional interactions and the role of Wnt/β-catenin 
signaling was recently reviewed [27]. While most focus 
has been on regulation of endothelial cell function by 
parenchymal cells, there are other examples of brain 
endothelial cell signals regulating parenchymal cells. For 
example, endothelial cells in gliomas promote glioma cell 
migration by secreting extracellular vesicles [28].

Neuronal activity also impacts brain endothelial cell 
function [29]. Pulido et al. [30] recently identified a core 
set of brain endothelial genes whose expression is regu-
lated by neuronal activity. Prominent amongst those were 
efflux transporters. They also found that effects of neu-
ronal activity on the expression of circadian clock genes 
in the brain endothelium was important in that regula-
tion. Neuronal regulation of brain endothelial function 
also occurs in areas without a BBB. Thus, Jiang et al. [31] 
found that melanin-concentrating hormone-expressing 

neurons regulate the permeability of blood vessels of the 
median eminence via vascular endothelial growth fac-
tor signaling. Another type of BBB regulation can occur 
with parenchymal cell death. Nishibori et al. [32] review 
how the nuclear protein High Mobility Group Box-1 
(HMGB-1), released after cell injury, acts to induce BBB 
disruption and neuroinflammation. HMGB-1 is a dam-
age-associated molecular pattern (DAMP) important 
in brain injury. It and other DAMPs may be therapeutic 
targets.

As well as regulating brain endothelial function, other 
elements of the NVU are also directly impacted by dis-
ease. Thus, pericytes are prone to HIV-1 infection and 
Torices et  al. [33] found that caveolin-1, occludin and 
Alix (an early acting endosomal factor) form a complex 
that regulates infection.

One generally neglected area of barriers research is 
the blood-nerve barrier. Ubogu [34] and Reinhold and 
Rittner [35] recently reviewed our current state of knowl-
edge on this barrier. Stubbs [36] discusses the impor-
tance of blood-nerve-barrier dysfunction in peripheral 
neuropathies while Takeshita et al. [37] have developed a 
human blood-nerve barrier model.

Choroid plexus
The CP has a circadian rhythm. Thus, Yamaguchi et  al. 
[38] examined the circadian rhythm of CP clock genes 
and the relationship between the CP rhythm and that in 
the suprachiasmatic nucleus and the pineal gland. Fur-
ther, Liska et al. [39] found that the CP circadian rhythm 
can be reset by circulating glucocorticoids and Furtado 
et al. [40] found the circadian rhythmicity of the CP clock 
gene, Bmal1, was disrupted in a mouse Alzheimer’s dis-
ease (AD) model. These findings suggest that CP function 
is altered during the day-night cycle. This may impact 
fluid, solute and cell movement across this blood-CSF 
interface.

In addition to other brain barriers, the CP may be 
involved in neuroinflammation. Solar et  al. [41] have 
recently reviewed the CP and the blood-CSF barrier 
in different diseases including those inducing neuro-
inflammation. Rodriguez-Lorenzo et  al. [42] examined 
inflammatory changes in the CP in multiple sclerosis. 
While evidence of inflammation was found, they sug-
gest that it plays only a minor role in immune cell infil-
tration in patients with chronic multiple sclerosis. In 
contrast, Mottahedin et  al. [43] provide evidence of the 
importance of the CP in neutrophil entry after hypoxia–
ischemia in neonatal rats and Saul et  al. [44] recently 
described structural and functional alterations at the CP 
in amyotrophic lateral sclerosis (ALS). Rayasam et al. [45] 
also found that the CP was an important route for mye-
loid cell entry after neonatal stroke and that CX3CR1 and 
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CCR2 signaling plays an important role in that infiltra-
tion. Nishihara et al. [46] compared the ability of CD4+ 
T helper subsets to cross the BBB and blood-CSF-barrier 
models in vitro and their results indicate different subsets 
use alternate routes for migration.

The impact of diet on the CP has received little atten-
tion. However, Alimajstorovic et  al. [47] recently 
reported that female rats fed a high fat diet have twice 
the CSF secretion rate of control diet rats and this may 
be a mechanism for idiopathic intracranial hypertension 
that occurs in obese individuals. Obata and Narita [48] 
reported that a high cholesterol diet or hereditary hyper-
lipidemia alters CP structure in rabbits.

Our understanding of the role of the CP in health and 
disease is aided by in  vivo imaging measurements in 
humans. Evans et al. [49] recently described using mag-
netic resonance imaging (MRI) to measure the move-
ment of water from arterial blood to CSF in human brain 
as well as mouse. MRI was also used by Zhao et al. [50] 
to examine CP hemodynamic parameters (flow, transit 
time) in humans. Eide et  al. [51] used MRI to track the 
clearance of gadobutrol after intrathecal administration 
in healthy individuals and those with idiopathic normal 
pressure hydrocephalus. They found a delayed clearance 
of the tracer by the CP in the hydrocephalus patients. 
Positron emission tomography (PET) imaging is also 
being used to study the human CP. Thus, total AV1451 
(tau) PET binding to the CP using Gaussian Mixed Model 
segmentation can distinguish between patients with AD 
from those with mild cognitive impairment [52].

Another method that may help to advance understand-
ing of the CP is the development by Pellegrini et al. [53] 
of human induced pluripotent stem cell (iPSC)-derived 
CP organoids. They already demonstrated fluid secretion 
and identified multiple functions of different epithelial 
cell populations.

Meninges
The meninges have long been an understudied tis-
sue. This is gradually changing because of the potential 
importance of meningeal lymphatics in CSF drainage and 
a route for immune surveillance of the brain (reviewed 
in [54]). Interestingly, Haugland et al. [55] recently found 
that implanting EEG electrodes in mice was enough to 
induce meningeal lymphangiogenesis and enhance the 
glymphatic pathway and Chen et  al. [56] provided evi-
dence that the meningeal lymphatics play a role in the 
clearance of red blood cells from CSF after subarachnoid 
hemorrhage (SAH). They found that ablating the menin-
geal lymphatics in mice greatly exacerbated SAH-induced 
brain injury. Being able to track meningeal lymphatic 
function in patients and how it is impacted by disease 
would be very useful and Ringstad and Eide [57] are 

currently using MRI to track the route for tracer move-
ment from CSF to dural lymphatic vessels in humans.

Apart from the dural lymphatic vessels, Shibata-Ger-
manos et  al. [58] have identified a cell type they name 
Leptomeningeal Lymphatic Endothelial Cells (LLECs) 
within the leptomeninges. These cells have lymphatic 
and macrophage properties and while they do not form 
lumens, they phagocytose macromolecules including 
amyloid-β and suggesting they may have homeostatic 
and immune roles.

Interestingly, Uchida et  al. [59] have also stressed the 
importance of transport at the blood-arachnoid bar-
rier. They found that the total protein expression of sev-
eral transporters at the arachnoid membrane, including 
p-glycoprotein and breast cancer resistance protein, was 
greater than at the CP. The importance of the arachnoid 
membrane in regulating CSF composition is under-
studied. Emerging evidence indicates the importance of 
the meninges as a niche for neural progenitor cells [60]. 
These cells may be a therapeutic target for treating neu-
rological disorders.

Glymphatic system
The glymphatic system continues to stimulate much 
research and many controversies [61] and imaging tech-
niques feature prominently in addressing these issues 
[62]. In particular, rapid advances in non-invasive MR 
techniques are promising, but have yet to definitively 
identify the glymphatic system in humans, and PET 
imaging is also being developed using radio-labeled trac-
ers [63]. There is considerable interest in the effects of 
the sleep cycle on the glymphatic system with potential 
implications for toxin clearance in neurodegenerative dis-
eases such as Alzheimer’s disease. For example, Hablitz 
et  al. [64] have shown a circadian rhythm in the glym-
phatic system in mice with a peak glymphatic influx and 
clearance during the mid-rest phase. Loss of aquaporin-4 
abolished the day-night differences. As noted elsewhere 
in this review, the CP and the BBB also show circadian 
rhythms. How these systems integrate and impact both 
toxin and drug clearance is an interesting and important 
area of future research.

A recent modeling study has emphasized the role of 
intracranial pressure in determining the relative contri-
bution of the glymphatic system to CSF clearance [65]. 
Also, Goodman and Iliff [66] highlight the critical impor-
tance of maintaining physiological blood gases in glym-
phatic studies. They found that hypercapnia (as can occur 
with anesthesia) profoundly reduced both the brain 
uptake of tracers injected into the subarachnoid space 
and the appearance of tracers in deep cervical lymph 
nodes after injection into mouse brain parenchyma.
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CSF analysis
CSF analysis is used in the diagnosis of some neurolog-
ical diseases [67, 68] although there are concerns over 
reproducibility [69]. One recent advance is in the use 
of metagenomic next-generation sequencing (mNGS) 
of CSF RNA and DNA (reviewed in [70]). It was used 
to simultaneously screen for a wide range of infectious 
agents in an un-biased manner.

Many neurological conditions differentially affect 
women and men. Kamitaki et  al. [71] examined the 
role of differences in the complement system in such 
sexual dimorphism. A genetic analysis indicated that 
complement component 4 (C4) genes C4A and C4B 
contribute to differential risk in systemic lupus erythe-
matosus and Sjogren’s syndrome. They also found that 
CSF concentrations of both C4 and C3 (a downstream 
effector) were higher in men than women.

One area where CSF biomarkers are increasingly 
used is in attempting to distinguish types of neuro-
degenerative disorders. While p-tau181 is an estab-
lished AD biomarker [67], Janelidze et al. [72] recently 
reported that p-tau217 may be a more useful bio-
marker. Similarly, Blennow et al. [73] proposed reduc-
tions in a tau fragment, tau368, in CSF as a novel 
marker of AD as it is sequestered into tangles. It should 
be noted that particular tau profiles change during AD 
progression [74]. For vascular dementia patients, Llor-
ens et al. [75] recently found that elevated CSF lipoca-
lin 2 levels can distinguish them from other types of 
neurodegenerative dementia.

CSF antibodies to glutamic acid decarboxylase 
(GAD) are found in several neurological conditions. 
Whether or not these GAD antibodies participate 
in pathology with GAD autoimmunity was recently 
reviewed by Graus et al. [76].

Identification of CSF leukocyte populations in dis-
ease states has also advanced. Schafflick et  al. [77] 
used single cell transcriptomics to identify CSF leuko-
cyte populations in multiple sclerosis and found that 
compartmentalized populations were driven by local T 
cell/B cell interactions. Gate et  al. [78] found clonally 
expanded CD8+ T effector memory CD45RA+ cells in 
the CSF of AD patients. These clonally expanded cells 
had enhanced T cell receptor signaling and had speci-
ficity to two separate Epstein-Barr virus antigens.

He et al. [79] have developed an interesting approach 
for sampling brain lymph fluid from the afferent lymph 
vessels of deep cervical lymph nodes. A different ana-
lyte profile may result from this fluid compared to 
the CSF sampled from the usual sites (e.g., lumbar 
puncture).

Neurological condtions
SARS‑CoV‑2/ COVID‑19
Neurological symptoms including long-term ones, 
are common in patients with COVID-19 [80, 81]. The 
underlying mechanisms for these effects are under 
intense investigation. There is evidence that the spike 
protein, S1, of SARS-CoV-2 can cross into mouse brain 
after IV or intranasal administration [82]. Furthermore, 
in a few cases of COVID-19 patients with neurologi-
cal symptoms, SARS-CoV-2 was detected in CSF by 
PCR [83, 84]. In contrast to a direct parenchymal effect 
of the virus, it was suggested that antibodies against 
SARS-CoV-2 cross the blood–brain barriers and cause 
the neurological symptoms by an autoimmune-like 
response [85, 86].

Another possibility is that SARS-CoV-2 may directly 
affect cells of the NVU and lead to neurological dys-
function [87]. In vitro, Buzhdygan et al. [88] found that 
the spike protein of SARS-CoV-2 induced a loss of brain 
endothelial cell barrier integrity and triggered a pro-
inflammatory response. However, it should be noted 
that questions have arisen over whether human brain 
endothelial cells normally express the angiotensin con-
verting enzyme-2 (ACE2) necessary for infection [89]. 
An alternate barrier site may be the CP and Jacob et al. 
[90] and Pellegrini et  al. [91] have both used human 
iPSC-derived organoids and found that the virus can 
infect the CP and disrupt choroid plexus function. 
Another alternate potential mechanism is that the sys-
temic inflammatory response to SARS-CoV-2 causes 
secondary effects on the brain [92].

The effect of SARS-CoV-2 is a rapidly evolving area of 
research. Doubtless, much more will be discovered in 
2021 including the impact on neurological function of 
different SARS-CoV-2 variants.

Spaceflight
Spaceflight and associated microgravity have emerged 
as new challenges with respect to the brain and CSF. 
It has been known for several years that long-duration 
spaceflight in particular, results in upward shifts in 
brain tissue, a narrowing of the CSF spaces at the ver-
tex, raised intracranial pressure and increased ventric-
ular volume [93]. The cardiovascular system adapts to 
weightlessness with an increased cardiac output and 
accumulation of venous blood in the head [94]. Space-
flight Neuro-ocular syndrome (SANS) is character-
ized by edema of the optic disc and flattening of the 
globe with optic nerve tortuosity leading to ophthal-
mic abnormalities [95]. Changes in CSF hydrostatic 
gradients and intracranial pressure may be responsible 
(reviewed in [96]).
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Hydrocephalus
Hydrocephalus is a diverse disorder characterized by 
enlarged lateral ventricles (ventriculomegaly) with or 
without increased intracranial pressure. Underlying 
causes include failure of correct brain development, 
hypersecretion of CSF, obstructed CSF circulation, insuf-
ficient CSF absorption and atrophy of brain tissue.

Genetic causes for ventriculomegaly
The molecular mechanisms underlying brain ventricu-
lar development are still incompletely understood. Yang 
et al. [97] have identified a member of the neural CAM 
gene family, Camel, that regulates cell adhesion in 
zebrafish. Loss of Camel causes hydrocephalus, scoliosis 
of the spine and failure of the Reissner fiber to form in 
the ventricular system, whereas increasing Camel mRNA 
induced Reissner fiber misdirection. Prior results indi-
cated that loss of the Reissner fiber (secreted by the sub-
commissural organ) can lead to hydrocephalus [98].

Correct cilia function is important for the brain and 
many examples of defective cilia are associated with 
hydrocephalus. For example, Robson et al. [99] examined 
patients with mutations in the multicilin gene, MCIDAS, 
using MRI. They found that all the patients had hydro-
cephalus, arachnoid cysts, and choroid plexus hyper-
plasia, possibly related to CSF overproduction. Another 
cilia protein, Cfap206 is regulated by FOXJ1 and Cfap206 
mutant mice develop hydrocephalus, Beckers et al. [100]. 
Similarly, Zou et  al. [101] found that loss of another 
motile cilia protein, RSPH9, caused hydrocephalus and 
ependymal cell loss in mice, along with some parenchy-
mal effects. The loss of membrane type 1-matrix met-
alloproteinase in mice causes a hydrocephalus that is 
associated with reduced and disorganized motile cilia 
and altered brain development, (Jiang et  al. [102]). Wu 
et  al. [103] found that vacuolar protein sorting associ-
ated protein-35 (VPS35) promotes differentiation, sur-
vival and ciliogenesis in ependymal cells. It also prevents 
local microglial cell activation and knock out of VPS35 in 
ependymal progenitor cells resulted in hydrocephalus.

Clearly, genetic defects are a leading cause for brain to 
develop abnormally with resultant ventriculomegaly as 
emphasized by Jin et al. [104] who used whole-exosome 
sequencing in patients with sporadic congenital hydro-
cephalus. They found that de novo damaging mutations 
accounted for ~ 20% of sporadic congenital hydrocepha-
lus cases that required neurosurgical treatment.

Hydrocephalus–other mechanisms
Reduced glycine decarboxylase function in mice and 
humans with non-ketotic hyperglycinemia is associ-
ated with hydrocephalus. Santos et  al. [105] found this 
reflects a defect in folate metabolism and hydrocephalus 

in glycine decarboxylase deficient mice was prevented by 
supplementing the maternal diet with formate.

A non-genetic cause of hydrocephalus is intraventricu-
lar hemorrhage (IVH). The lysis of red blood cells with 
the hemorrhage may trigger events contributing to the 
hydrocephalus. For example, peroxiredoxin 2, the 3rd 
most common protein in red blood cells, was shown to 
be a contributor to IVH-induced hydrocephalus in rats 
and a powerful inflammatory mediator (Tan et al. [106]).

Idiopathic normal pressure hydrocephalus is a con-
dition where CSF circulation and /or absorption may 
be defective and different MRI techniques are giving 
improved insight into hydrocephalus and the glymphatic 
system. Eide et al. [107] used long-term MRI after intrath-
ecal injection of a contrast agent, gadobutrol, to examine 
CSF tracer dynamics in patients with idiopathic normal 
pressure hydrocephalus and compared those changes to 
alterations in CSF system anatomy and neurodegenera-
tion. This may prove a useful tool for examining mecha-
nisms underlying hydrocephalus. Determining which 
normal pressure hydrocephalus patients will potentially 
benefit from shunt surgery and which tests are predictive 
of success continues to be a subject of major concern. For 
example, Wolfsegger et al. [108] used a quantitative gait 
analysis scale together with radiological and psychologi-
cal assessments with CSF tap tests to refine the diagnosis.

Hydrocephalus treatment
Shunt failure continues to plague hydrocephalus treat-
ment. Work from the Hydrocephalus Clinical Research 
Network identified factors that may predict fast and 
ultrafast shunt failure [109]. Age at time of surgery, 
hydrocephalus etiology and a history of prior failures 
were important predictors. In contrast, slit or enlarged 
ventricles were not. A large-scale study of failed shunts 
(shunt biobank) was developed with the aim of produc-
ing a prognostic algorithm [110].

There is a dire need for therapeutics that can allevi-
ate the burden of hydrocephalus. Hochstetler et al. [111] 
recently reported that antagonists of transient receptor 
potential vanilloid 4 (TRPV4) channels can ameliorate 
hydrocephalus in a rat genetic model. Zhang et al. [112] 
developed a novel, potent SPAK kinase inhibitor that reg-
ulates brain cation-Cl− cotransporters. Intracerebroven-
tricular administration of the inhibitor reduced CSF 
hypersecretion in a model of post-hemorrhagic hydro-
cephalus. It also reduced brain edema and improved 
outcomes in a model of stroke. The development of treat-
ment strategies may be assisted by in  vitro modeling. 
Castaneyra-Ruiz et al. [113] presented a model for exam-
ining the effects of intraventricular hemorrhage on the 
developing ventricular zone and the associated stem cell 
niche.
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Dementia
The effects of aging on the brain that lead to cognitive 
decline and dementia are complex, involving such agents 
as β-amyloid, tau and the susceptibility gene, APOE4. 
Expression of the latter increases the risk for AD and is 
associated with earlier onset. Importantly, Montagne 
et  al. [114] recently found that BBB disruption contrib-
utes to APOE4-associated cognitive decline in patients 
independently of AD pathology and that higher levels of 
ApoE and tau, but not β-amyloid and APOE4 gene, were 
correlated with lower levels of claudin-5 and occludin in 
AD patient brains (Liu et  al. [115]). This suggests there 
may be multiple NVU targets for reducing the cerebro-
vascular and cognitive effects of aging. Montagne et  al. 
[114] also found that high CSF levels of a pericyte injury 
marker predicted cognitive decline in patients that car-
ried the APOE4 gene, but not non-carriers. Furthermore, 
Blanchard et al. [116], using a human in vitro BBB model, 
found that APOE4 induces a cerebral amyloid angiopa-
thy-like pathology in pericytes.

Johnson et al. [117] performed a large-scale proteomic 
analysis of brain and CSF in AD and identified changes in 
brain glucose metabolism and protein markers associated 
with an anti-inflammatory state that were also elevated in 
CSF.

There has been interest in examining changes in the 
retinal vasculature in AD patients to provide insight 
into cerebrovascular changes. Shi et  al. [118] identi-
fied pericyte loss and vascular amyloidosis in AD retina 
post-mortem and these changes correlated with brain 
β-amyloid burden, cerebral amyloid angiopathy and clini-
cal symptoms. Because β-amyloid and tau play a central 
role in AD pathogenesis there has been great interest in 
how these molecules are cleared from brain at the blood–
brain barriers and via CSF and the glymphatic system and 
how such clearance is impacted by the disease itself. Har-
rison et al. [119] recently reported evidence of impaired 
glymphatic function and tau clearance in a mouse model 
of tauopathy, and that such clearance can be affected by 
an aquaporin-4 inhibitor.

Stroke and traumatic brain injury
In stroke, there is a question over whether brain endothe-
lial injury is purely a consequence of parenchymal injury 
or whether it contributes to parenchymal injury. Evi-
dence is accruing, using models with endothelial specific 
genetic deletions or overexpression, that supports the 
latter, indicating that brain endothelium is a target for 
reducing ischemic brain damage. For example, Ma et al. 
[120] found that endothelial-selective deletion of the 
microRNA cluster, miR-15a/16–1, reduced brain infarct, 
BBB dysfunction and neuroinflammation after stroke 

in mice. That same deletion increased the expression 
of claudin-5 and, interestingly, the authors also found 
that miR-15a/16–1 binds to the 3’ untranslated region 
of claudin-5. Similarly, Sun et  al. [121] found that the 
endothelial-selective deletion of miR-15a/16–1 also pro-
moted angiogenesis after stroke and improved long-term 
neurological outcomes in mice. In addition, endothelial 
specific overexpression of Kruppel-like factor 11 reduced 
infarct size, BBB disruption, edema and neuroinflamma-
tion in mice (Zhang et al. [122]). As noted above, Sladoje-
vic et al. [1] found that mice with an endothelial-specific 
RGS5 knockout had larger infarcts, worse neurological 
deficits and more brain edema after stroke. Pericyte dys-
function also plays an important role in stroke pathology. 
Sun et  al. [123] showed that transplantation of human 
pluripotent stem cell-derived pericyte-like cells improves 
functional outcomes after stroke in mice.

While severe and moderate traumatic brain injuries 
are known to cause BBB disruption, the impact of milder 
injuries is less clear, particularly with repetitive events. 
O’Keefe et al. [124] examined such injury using imaging 
and blood biomarkers of BBB injury in rugby players and 
mixed martial arts fighters. They found evidence of BBB 
dysfunction can occur in a subset of people after repeti-
tive sub-concussive forces. Similarly, Veksler et  al. [125] 
detected BBB dysfunction in American Football players 
using dynamic contrast-enhanced MRI. They also found 
BBB dysfunction in rodents exposed to mild repetitive 
closed-head injury. There is also evidence that acute but 
mild head trauma causes extravasation from the menin-
geal vessels into the subarachnoid space [126].

Brain edema
Brain edema is a major complication in a variety of neu-
rological conditions including stroke, traumatic brain 
injury and brain tumors and novel treatment strategies 
and targets are badly needed. Targeting the subcellu-
lar distribution of aquaporin 4 (preventing cell surface 
expression) was found to reduce edema after spinal cord 
injury in rats (Kitchen et  al. [127]). Mestre et  al. [128] 
have proposed the provocative idea that CSF influx into 
brain parenchyma drives early edema after cerebral 
ischemia based on evidence that glymphatic influx from 
CSF to brain is doubled in the early stages of ischemia. 
Ischemic brain edema is associated with a net accumu-
lation of brain ions and it has been also proposed that 
ion transport inhibitors may be a method of suppressing 
edema formation. It is interesting that the SPAK inhibitor 
developed by Zhang et  al. [112] regulates brain cation-
Cl− cotransporters and reduces ischemic brain edema. It 
should be noted, however, that it also reduced infarct size 
which may itself impact edema formation.
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Psychiatric disorders
There has been recent interest in the role of brain 
endothelial cell/claudin-5 dysfunction in psychiatric dis-
orders, including depression and schizophrenia [129]. 
Dudek et  al. [130] identified factors that may explain 
vulnerability or resilience of the BBB against the effects 
of chronic social stress (a model of depression) in mice, 
effects that also seem to occur in humans. These results 
may help to identify novel therapeutic strategies for 
depression. There may be molecular targets within 
the NVU as a whole as well as specifically the brain 
endothelium. Thus, Sugimoto et  al. [131] reported that 
serotonin/5HT-1A signaling in the NVU enhances brain 
endothelial claudin-5 expression and may be linked to 
altered serotonin signaling found in multiple psychiatric 
disorders.

Lehmann et al. [132] examined transcriptional changes 
in the brain endothelial cells of mice exposed to chronic 
social stress. They found changes related to inflamma-
tion, oxidative stress, growth factor signaling and angio-
genesis. Interestingly, cessation of the social stress led to 
a recruitment of leukocytes that may participate in vas-
cular repair. Ouellette et  al. [133] also found a vascular 
component to autism spectrum disorder. Using a mouse 
model of 16p11.2 deletion autism spectrum disorder syn-
drome, they found structural and functional cerebrovas-
cular changes and that endothelial cell-specific 16p11.2 
deletion recapitulated some of the behavioral changes 
found in 16p11.2 deletion syndrome.

Drug delivery
The delivery of therapeutics to the brain for treatment of 
neurological disorders continues to be a subject for much 
research. For example, enzyme replacement therapy is 
being used for the treatment of patients with lysosomal 
storage disorders. However, such proteins do not cross 
the NVU/BBB limiting their use in such disorders with 
CNS involvement and one approach is to use methods 
to enhance blood–brain transport. For example, Sun 
et al. [134] have used nanovesicles of saposin C and dio-
leoylphophatidylserine to transport β-glucosidase into 
brain in a mouse model of Gaucher disease and found 
a marked improvement in the neurological phenotype. 
Also, Hede et al. [135] used a gene therapy approach to 
examine whether it is possible to induce brain endothe-
lial cells to produce the required protein. For NPC2, the 
protein that is mutated in Niemann Pick type C2, they 
have shown, at least in  vitro, the feasibility  of such an 
approach. Interestingly, Gorick et  al. [136] showed that 
pulsed low-pressure focused ultrasound in conjunction 
with gas-filled microbubbles can be used to transfect the 
cerebral endothelium without causing BBB disruption.

A more established use of focused ultrasound with 
microbubbles is to increase the permeability of the NVU/
BBB, a technique now in clinical trials. Thus, Rezai et al. 
[137] demonstrated that it can safely cause transient 
enhanced permeability in the hippocampus of patients 
with early AD. Furthermore, D’Haese et  al. [138] used 
focused ultrasound-induced BBB/NVU disruption to 
induce a modest reduction in β-amyloid plaque burden 
in early AD patients.

There continues to be a major focus on targeting recep-
tor-mediated transcytosis at the BBB/NVU for drug 
delivery. Thus, Kariolis et al. and Ullman et al. [139, 140] 
used a Fc fragment that targets the transferrin receptor, 
a receptor that is highly expressed in brain endothelial 
cells. This fragment has then been used to create anti-
body transport vehicle molecules for evaluation in mice 
and monkeys. The Ullmann et  al. [140] study demon-
strated delivery of iduronate 2-sulfatase to the brain in a 
mouse model of mucopolysaccharidosis type II, another 
lysosomal storage disorder, and improvement of brain-
related pathology. Stocki et al. [141] also identified single 
domain antibodies with high affinity for the transferrin 
receptor, one of which crosses the blood–brain interface 
and is taken up by neurons. Intravenous administration 
of the antibody fused with neurotensin caused a reduc-
tion in body temperature (i.e., the construct induced a 
physiological response).

Georgieva et  al. [142] used a human iPSC-based BBB 
model combined with a human single-chain variable 
fragment phage display to screen for potential targets for 
transcytosis. They identified a number of candidates, one 
of which showed markedly increased uptake into mouse 
brain. Gregory et  al. [143] produced a synthetic pro-
tein nanoparticle based on polymerized human serum 
albumin chemically linked to a cell-penetrating peptide 
(iRGD). The nanoparticles were loaded with a siRNA 
against Signal Transducer and Activator of Transcription 
Factor 3 (STAT3) and given systemically along with ion-
ized radiation to mice with glioblastoma. The treatment 
resulted in tumor regression and long-term survival in 
87.5% of mice. Targeting the cerebral endothelium was 
also examined by Gonzalez-Carter et al. [144]. They used 
the low rate of endocytosis in brain endothelial cells to 
specifically target nanoparticles to the surface of those 
cells with minimal accumulation in other organs. The cer-
ebral endothelium is capable of undergoing remodeling 
in disease states (e.g., upregulation of adhesion molecules 
participating in leukocyte infiltration). Marcos-Contreras 
et  al. [145] used this feature to target the brain in neu-
roinflammation by creating vascular cell adhesion mol-
ecule-1 (VCAM-1) antibody/liposomes as drug carriers.

A novel approach to enhancing drug delivery to the 
brain was employed by Zhao et  al. [146] who used the 
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lymphatic vasculature. They found a subcutaneous injec-
tion in the neck close to a lymph node resulted in 44-fold 
higher drug uptake into brain compared to an intrave-
nous injection.

New thematic series on advances in in vitro 
modeling of the BBB and NVU
In vitro models have been very important in understand-
ing the BBB and the NVU. They can provide insights 
that cannot be obtained by in  vivo experiments. How-
ever, conventional in  vitro models do not fully replicate 
the BBB/NVU properties found in vivo leading to major 
efforts to improve the models. Fluids Barriers of the CNS 
published a thematic series aimed at detailing advances 
in in  vitro modeling and providing new insights into 
brain microvascular endothelial cell (BMEC) and NVU 
function that have been obtained from in  vitro models. 
Here are some highlights.

A very wide range of in vitro models are now being used 
to study the BBB/NVU. As reviewed by Bhalerao [147], 
the field has expanded from static BMEC mono- and 
co-cultures to include brain organoids, organ-on-a-chip 
models, spheroids and 3D microfluidic devices. Histori-
cally, BMEC primary cultures or BMEC-derived cell lines 
have been used, but one major advance in the past eight 
years has been in the use of human induced pluripotent 
stem cells (iPSCs) to produce BMECs and other cells of 
the NVU. Unlike conventional BMEC primary cultures 
and BMEC-derived cell lines, mono- and co-cultures of 
iPSC-derived BMECs have transendothelial electrical 
resistances (TEERs) and paracellular permeabilities close 
to that in vivo [148, 149]. In the thematic series, Work-
man and Svendsen [150] reviewed recent advances in 
using such iPSCs to model the BBB in conventional tran-
swell experiments, as well as in 2D microfluidic chips and 
3D microvessels.

It should be noted that there are controversies over the 
phenotype of iPSC-derived BMECs and whether they are 
‘endothelial’ or ‘epithelial’. This controversy is addressed 
by Lippmann et  al. in a commentary [151] and they 
strongly suggest the term ‘BMEC-like’ be used for these 
cells. As always, there is a need, where possible, to com-
pare results from such models to in vivo measurements. 
It is important to benchmark in  vitro models [152] and 
the article of Francisco et  al. on the uses of RNAseq in 
studying the blood–brain barriers highlights the use of 
that technique for such benchmarking [15]. With regard 
to the phenotype of brain endothelial cells, the impor-
tance of the microenvironment in vivo for inducing dif-
ferentiation by signaling pathways (e.g., Wnt/β-catenin 
and others pathways) and dedifferentiation under culture 
conditions was further characterized [153].

There are still major efforts to improve iPSC-derived 
BBB/NVU models as shown in the thematic series. One 
focus has been on the impact of extracellular matrix 
components. Aoki et  al. and Motallebnejad & Azarin 
[154, 155] both showed the importance of laminin (an 
important component of the BMEC basement mem-
brane) in enhancing barrier integrity. One major advan-
tage of such human iPSC-derived models is that they can 
assess the impact of patient-specific genetic mutations on 
BBB/NVU functions. An example of this is the work of 
Katt et al. [156] on the effects of genetic mutations on the 
barrier functions in neurodegenerative disorders.

Cells in the NVU (e.g., astrocytes and pericytes) are 
also an important determinant of BMEC function. Two 
papers in this thematic series address the role of peri-
cytes. Jamieson et  al. [157] have examined the effect of 
human iPSC-derived pericytes in 2D and 3D BBB mod-
els in  vitro and found effects that are model and stress 
dependent. Heymans et  al. [158] have examined the 
effects of pericyte co-culture on BMEC gene expression, 
identifying signaling pathways that may underly changes 
in BMEC function.

Brain endothelial cell tight junctions, transport-
ers and levels of endocytosis/transcytosis are impor-
tant determinants of BBB function. This thematic series 
includes studies addressing all those areas in  vitro. One 
use of in vitro models is to examine the mechanisms by 
which the BBB/NVU is impacted by disease. For exam-
ple, two are related to stroke: Andjelkovic et  al. [159], 
who review methods of modeling cerebrovascular dis-
ease in vitro and Gerhartl et al. [160] who examined the 
effects of astrocyte and pericyte co-culture on the BMEC 
response to in vitro ‘ischemia’. Neuroinflammation is an 
important component of many neurological diseases. As 
reviewed by Erickson et al. [161], the brain endothelium 
and the NVU play multiple roles in neuroinflammation 
and in vitro models have enhanced our understanding of 
those roles. Such models also provide a method for test-
ing potential therapies to limit BBB/NVU dysfunction in 
disease. Thus, Ge et al. [162] showed the ability of human 
embryonic stem cell-derived mesenchymal stem cells to 
repair the BBB dysfunction induced by a major inflam-
matory mediator, tumor necrosis factor (TNF)-α, in vitro.

In summary, the thematic series on advances in in vitro 
modeling of the BBB and NVU highlights the strides that 
are being made in the area. In vitro models have helped 
and will continue to help us gain insights into normal 
BBB and NVU function as well as the impact of different 
pathologies.

Other studies on in vitro modeling of the BBB and NVU
Outside the thematic series, there were important stud-
ies on in vitro modeling. A plethora of new models have 
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been developed (too many to review fully here). For 
example, Nishihara et  al. [163] used what they term an 
extended endothelial culture method for human iPSCs 
which allows the study of immune cell interactions with 
BMEC-like cells and Linville et al. [164] have developed 
a novel 3-D model using human iPSCs to study human 
brain angiogenesis. Also, brain organoids were made 
from human embryonic stem cells that form blood ves-
sel-like structures (Ham et al. [165]) and Ahn et al. [166] 
developed a microphysiological human BBB platform 
that allows 3D tracking of nanoparticles in the vascular 
and perivascular spaces.

Conclusions
We thank the readers, authors, reviewers and edito-
rial board members of Fluids and Barriers of the CNS. 
Despite the impact of COVID-19, 2020 has produced a 
bumper crop of major advances in the fields of brain bar-
riers and brain fluids research. Thank you all for your 
contributions.
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